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The gasdynamic problem of collapsing shocks and detonation waves having 
spherical or cylindrical symmetry is considered near the point or axis of sym- 
metry. The solution basic to this work is the self-similar flow of a collapsing 
symmetrical shock wave with counterpressure neglected. The focusing effect as 
the flow progresses causes the front to accelerate and its velocity is singular at 
the instant of collapse. In  the present work the perturbations, due to counter- 
pressure and also to a uniform heat release, which give rise to essentially identical 
mathematical solutions, are evaluated. The basic self-similar solution is investi- 
gated in detail over a range of values of the specific heat ratio. 

1. Introduction 
The similarity solution to the problem of a contracting (imploding) spherical or 

cylindrical shock front propagating into a uniform gas at  rest is well known. As 
the shock progresses its surface area diminishes, causing its velocity to increase 
towards the centre of symmetry, where it is infinite. The similarity solution is 
valid near the centre of symmetry, where the shock is strong. 

In the present paper the shock is replaced by a contracting detonation front 
propagating into a uniform gas and releasing a constant amount of energylunit 
mass of gas. A t  large distances from the centre, where the curvature is negligible, 
the detonation is a Chapman-Jouguet front, i.e. it travels with sonic speed 
relative to the burnt gas. The front accelerates towards the centre of symmetry 
and becomes overdriven, the motion now being governed more by the com- 
pression effects, due to focusing of the front, than by the heat release. The 
solution for the final stages is obtained as a perturbation, of order the inverse 
square of the speed of the front, on the corresponding similarity solution involving 
a shock wave. In  the latter solution the strong shock relations are applied at  the 
front so that only the undisturbed density enters into the problem, which has no 
time scale. In  the present case of a detonation the heat release is taken into 
account, to first order so that the basic similarity hypothesis is unaltered, in the 
conservation equations at  the front. The form of the perturbation so obtained is 
identical to that due to taking into account the pressure (or sound speed) of the 
undisturbed gas to first order. The disturbance of the speed of the front, due to 
heat release and initial pressure, is evaluated for several spherical and cylindrical 
cases by linearizing the equations of motion. The solution has to satisfy the 
conservation equations at the front and also be regular on a certain characteristic. 
The basic and perturbation equations are integrated numerically by making use 
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of the power series expansions about this characteristic. A comparison is made 
with the results obtained by the approximate method as given by Whitham. 

The results obtained by Butler for the Guderley solution are recomputed and 
extended. It is found necessary to investigate the existence and uniqueness of 
this solution. 

The unsteady motion of a perfect, inviscid, non-heat-conducting gas is in 
general governed by partial differential equations. However, in the case of a flow 
which is one-dimensional, or spherically or cylindrically symmetric, so that the 
flow variables depend on a distance co-ordinate R and the time co-ordinate t ,  
there is a class of solutions in which all variables are functions of a single combina- 
tion of R and t ,  R/ta where a is constant. Such flows are self-similar (Sedov 1959) 
and are governed by ordinary differential equations. The special case a = 1 
corresponds to a uniformly expanding or contracting flow, so that if such a flow 
is adiabatic then it is also homentropic, apart from entropy jumps across 
discontinuities, as any shock wave in the flow is of uniform strength. An example 
of a flow of this type (a = f )  is that of a strong point-explosion (Sedov 1959; 
Taylor 1950b) which involves an expanding, decaying spherical shock wave. 

The problem to be investigated here is that of a contracting spherical or 
cylindrical detonation wave propagating into a uniform combustible gas. It is 
already known that there is no solution involving a uniformly contracting front 
(Selberg 1959; Stanyukovich 1960). This result will be deduced later from 
investigation of the integral curves of Rlt, homentropic solutions. 

In  order to solve the problem of a contracting detonation front it will be 
necessary to study Guderley's solution (Guderley 1942; Butler 1954) for a con- 
verging shock wave, in which the shock front accelerates towards R = 0, where 
its velocity is infinite. If the shock path is R = h(t), then the shock speed U* is 
given by 

U* cc --A1-lla, where 0 < a < 1. 

The Guderley similarity solution is valid for small values of A, for which the shock 
is strong so that the undisturbed gas pressure can be neglected. The flow variables 
behind the front thus depend upon the shock speed and undisturbed density 
only, which leads to the similarity hypothesis. If we now consider the effect of a 
uniform heat release in the medium as the front passes through it, then this results 
in the addition of a finite amount of energylunit mass to the system and is thus 
a perturbation on the Guderley solution. The form of the perturbation can be 
deduced as follows. The particle velocity behind the shock is given by 

Let the particle velocity behind the detonation be 

u; = u,*+ v, 
where V is supposed small relative to u,*. The extra kinetic energylunit mass, 
which is directly due to the heat release and so must be finite, is of order Vu,* and 
hence the perturbation velocity V is of order U"-2 or h-2+21a relative to the basic, 



Imploding shocks and detonations 63 

shock wave solution. Similarly the sound speed perturbation is of order h-w2/a. 
Throughout the flow in general the perturbations are of order R-2+2/". The effect 
of allowing for the initial pressure (or internal energy) of the undisturbed gas 
gives rise to perturbations of precisely the same form. Let the speed of the front 

be given by U" - n1-y 1 +pA-2+2 /a ) ,  

where ,8 is a constant due either to heat release or initial pressure, or both. In  a 
given case we require the values of a, p to determine the path of the front. 

The evaluation of the constant parameter a is performed by integrating the 
equations of motion, which can be reduced to a single first order, non-linear 
differential equation, subject to certain boundary conditions. In  the case of a 
point-explosion a is determined simply by consideration of the dimensions of the 
basic parameters (the density and the energy of the explosion). However, in the 
contracting case there is only one basic parameter, the density, and a unique 
mathematical solution is obtained by assuming that the flow is regular on a 
certain characteristic following behind the shock. The conservation equations 
across the front and the regularity condition on the characteristic provide the 
two necessary boundary conditions for the solution of the differential equation. 
The values of a for the six cases y = 1.2, 1.4, 9, spherical and cylindrical, have 
been computed by Butler. His results are extended to y = 3, for the products of 
a detonation. 

To find the correct value of a we must use a method of trial and error. However, 
the linearity of the perturbation equations means that the appropriate solution 
for p can be evaluated by taking a certain combination of any two linearly 
independent solutions. /3 is calculated for y = 1.2, 1.4, 9, 3 for both cylindrical 
and spherical symmetry, and for heat release and undisturbed pressure. Com- 
parison is made with results obtained by the approximate method in the form 
given by Whitham (1958). It is known that this approximate method, as applied 
by Chisnell (1957) in his 'shock-area' rule, gives extremely accurate results for 
the values of a but it is found here that the approximate values ofp by this method 
are much less accurate. 

The equations governing the motion are integrated between the front and the 
characteristic, which is necessary for the evaluation of a and p. To obtain the 
distribution of the physical variables behind the front the integration would have 
to be continued as far as t = 0, at which instant the shock is at R = 0 and is 
reflected. If all the heat energy available is released during the contracting phase 
of the motion then the front is reflected as a shock wave. 

Contracting shock waves have previously been investigated both experi- 
mentally (Perry & Kantrowitz 1951) and numerically (Payne 1957). A problem 
having great similarity to that of converging shocks is that of cavitation in water, 
which has been studied by Hunter (1960,1963) and differs from the former in the 
boundary conditions at  the front and the fact that the motion is taken to be 
hornentropic. A regularity condition on a certain characteristic is also employed 
to obtain a unique solution. The similarity hypothesis requires that the density 
in the cavity be zero. The effect of finite density (Holt & Schwartz 1963; Holt 
1965; Holt, Kawaguti & Sakurai), to first order is that of a perturbation on 
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Hunter's solution, of order the inverse square of the speed of the front, and is 
analogous to the present work. 

A perturbation of Guderley's solution due to departures from spherical sym- 
metry has been studied by Butler (1956), who finds the collapse to be unstable in 
the presence of such disturbances. 

2. Equations of motion and similarity 
The equations governing the symmetric motion of a perfect, inviscid, non- 

heat-conducting gas with constant specific heats cp,  cv, can be expressed in 
characteristic form as 

(1) 
a a * - -ju*c* 1 8q5* 2 (u* & kc*) + (u* & c*) - (u* * kc ) - f ~ +- c * 2  -- aR R y aR' 

a$* a$* --++*- = 0 
at aR ' 

where * denotes a physical quantity, 
u* denotes particle velocity, 
c* denotes sound speed, defined by c*2 = (ap*/ap*)$ = yp*/p*, 
s* denotes specific entropy, 

c *C2YlCY -1)) 
q5*' a measure of entropy, is defined by $* = log ( p* ) , 

and j = 1 for cylindrical symmetry, j = 2 for spherical symmetry. 
Suppose that U* is the velocity of a wave-front R = h(t), moving into uniform 

gas. For the case of a strong shock wave the boundary values immediately behind 
the front, which are identical to those for a plane front if h is large in comparison 
with the shock width, are 

u* = 2/(y+ 1) u*, 

where 4% is the value of q5* a t  some reference state and the negative sign is 
selected if U* is negative. The assumption that the shock is strong leads to the 
neglect of the undisturbed pressure (or sound speed). Thus the flow behind the 
wave is determined by U*, pg, and since U* has the dimensions of velocity i t  
must be related to A, t by U* = ah/t, where 01. is a dimensionless constant and 
t < 0 for the contracting case (t = 0 is the instant at which the front is at R = 0). 
Hence 

ah h u* =-=a- 
at t 

so that the equation of the front is 
t = Ahlia 
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and we can choose A = -a by fixing the length scale appropriately. Thus the 

u* = -Al--l/Cc. 
front is 

Let 5 = t/aWa. The values of u*, c* on the shock, 6 = - 1, are 

2 u* = - ~ hl-lla 
y + l  ' 

Y+l 
* - P Y ( Y  - 12 hl-lla c -  9 

#* = k(l-;)logh+f#l: 

and the general values may be written 

where r,  s are respectively the dimensionless fluid velocity and sound speed and 

2 
T(-1) = __ 

y + i 7  

# ( - 1 )  = 0. 

This similarity form, in which the unknowns are functions of 5 only, may be 
substitutedinto the governingequations (1) and (2) to obtain ordinary differential 
equations for r(g), s(E), #([). The last of these is 

( 5 )  
d# - k(l-a)r z-- 1-r ' 

which may be employed to eliminate d$/dE from the first two, giving 

Y 

1 
dr 
dc 
as 

d5 
where 0 = (r-l)(l-r+s)(l-r-s) ,  

2 0 5  - = (1 -T + 8) B, + (1 - r -  s) B-, 

2kD5- = ( l - r+s )B+- ( l -~ -~ )B- ,  

k(1-a)  
B, = ( r -  1) (1 -a(r f s)} (r kS) ~ j a ( ~ -  1) ~8+- s2. 

The equations (6) combine to give a single differential equation for r = ~ ( s )  

5 

(7 )  
1 dr 
k as 

(1 - r +s) B, + (1 - r -  8) B- 
(1 - r + s) B, - (1 - T - 8) B,' 

_ _  - - 

Fluid Mech. 29 



66 R. L. Welsh 

Since the wave-front is at R = 0 at  the instant t = 0, negative values of s, which 
correspond to negative values of t ,  arise from contracting fronts and positive 
values of s from expanding fronts. 

The conservation equations across the front, assumed plane and including a 
heat release term are 

p*(u* - U*)  = p$(ut - U*),  

p* +p*(u* - U*)2 = p* 0 +Po*(.$ - U*I2, 

where Q is the heat release/unit mass of gas, o denotes the undisturbed gas and 
ut = 0 if the gas is initially at rest. 

The solution of (8) for u*, c*, $* in terms of Q ,  c $ ~  (retained to first order since 
U* > c$,Q*) is 

(9) 

2 u* = __ U*-KU*-1, 
Y + l  

* C *  = EU*+E'U*-l, 
$* = klog(& U*)+HoU*-2+$$,  

where 

Thus the perturbation terms are of order U*-2 or h-2+2/a relative to the basic 
solution, as deduced previously, and the general solution is of the form 

$* = k(  1 -:)log R + $(t) + F ( ( )  R--2+(2/a). J 
The equations governing the system to zero and first order are obtained by 

examining the zero and first-order terms in ( l ) ,  ( 2 )  substituting u*, c*, #* from 
the above. The zero-order equation (i'), as obtained previously, and the first- 
order system, with s taken as the independent variable, are 

( 1 - r - s )  E + k )  B- = ( l - r + s )  --k B+, (:: ) 
( r - l ) ( l - - r T s )  - + k -  B, - A  - 

as-  as 

dk' 
as 

(Y-1)-B+ = 
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where 

67 

I B,  - r T k s  
(r - 1)  (1 - r T s) 

= ( 1  - r  T s )  (F & k5) + (F & 5)  A* 
( r -  1)2(1 --r T s)  

T ( 1  -a) (k- 1) (6-Fs) Tja(rS+Fs) 

3. Homentropic solutions 
A n  examination of the dimensional parameters involved in the collapse of a 

spherical detonations front, namely heat release, and initial density and sound 
speed say, would suggest the possibility of a self-similar, uniform (Rl t )  collapse. 
In  the expanding case, which is identical dimensionally, the uniformly expanding 
self-similar solution is well known (Taylor 1950a,b). In  fact if these three 
quantities are taken as the basic parameters then a self-similar solution would 
have to be of the Rlt  type. 

In  the special case a = 1, (7) reduces to 

dr r ( l - r ) 2 - s 2 ( l + j )  
ds = ; ( l - -r)( l -r- j -r /k)-S2* 

The integral curves of this equation are given in figure 1 (Courant & Friedrichs 
1948, p. 426), the direction being that of increasing time. The equation has six 
singular points: 

and it can be shown that the nature of these singularities does not depend on the 
value of y or whetherj = 1 or 2. A point in the ( r ,  s)-plane corresponds to a path in 
the (R, t)-plane. The possible changes across a detonation or shock front form a 
locus in the ( r ,  8)-plane. From the conservation equations across a detonation 
front, with a constant heat release &/unit mass, the following relation between 
u*, c* behind the front can be obtained 

c*2 = (U" - u*) (7 u.* + u* - (y  - 1) - , 
U* Q1 

which, in terms of r,  s, becomes 

This is the equation of the locus of the possible transitions across a detonation 
front. The corresponding shock locus is obtained by setting Q = 0 

s2= ( l - r ) { & ( y - l ) r + l ) ,  

which is an ellipse. In  each of these equations the value of r has to be not greater 
than 2/(y + l), which corresponds to an infinitely strong front. The two curves 
intersect at  X & where r = 2/(y + 1)  as Q is negligible if U* tends to infinity. The 
lines r = 1 & s are sonic lines and are critical in that the direction of integral curves 
changes on crossing them. Thus no physical solutions can cross r = 1 -t s. The 
detonation locus intersects these lines at D & , which are the Chapman-Jouguet 

5-2 
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detonation points. In  the expanding case, s > 0, an integral curve runs from D + 
to the point (0, l), which corresponds to a state of rest. This curve represents the 
solution given by Taylor’s expanding, Chapman-Jouguet detonation wave. 

r = I-s r = l + s  

FIGURE 1 

However, no integral curve can be extended from the point D-, corresponding to 
a contracting Chapman-Jouguet detonation front. The arc D- X- of the detona- 
tion locus corresponds to overdriven fronts, and integral curves intersecting this 
arc all run into the critical line r = 1 +s. Hence there exists no uniformly con- 
tracting detonation fronts, either Chapman-Jouguet or overdriven. 

Thus we have a mathematical argument for the non-existence of a uniformly 
collapsing shock as well as the physical one, that the focusing effect should cause 
the shock to accelerate towards the collapse point. 

4. The limiting characteristic 
The boundary values at  the front for the basic solution are given by (3). 

However, the unknown parameter 05 appears in the differential equations, so 
that an extra condition remains to be found. This is obtained by examining the 
lines on which the solution of equations ( 5 ) ,  (6) may be singular. There are four 

1 - r T s  = 0, such lines,: 

1--r = 0, 

The first pair gives the positive and negative characteristics through R = 0,  t = 0,  
the third the corresponding particle path, and the fourth is the line R = 0, t 2 0. 

k=-m.  
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In  the region t < 0 there is a limiting negative characteristic (1.n.c.) travelling 
behind the shock and reaching R = 0 a t  the same instant, t = 0, as the shock. 
For an arbitrary choice of a the solution will be singular on this line. Such a 
singularity could exist only if it  were produced during the initiation of the shock 
and precisely on this limiting characteristic. For this reason we shall exclude the 
possibility of a singularity of this type and require the solution to be regular on 
the 1.n.c. Let the equation of the 1.n.c. be = fll(O > El > - 1) in the basic flow, 
and 

where Gisa constant, in the perturbed flow. Thus the boundary values of u*, c*, $*, 
in the form (10) on the 1.n.c. are 

g = gl( 1 + &R-'+'/a), 

U* = u(t1) R1-l/" + { (du/d( ) f l  tl 6+ U(g1) )  R-l+lla, 

C* = G(~J R'-l/a+ {(dc/dfl)fl 61 6+F((J}R-1+1/a, 

where r = ut, s = ct .  Also, on this line 

dR/dt = U* - C* 

and, from its equation, we have 

on it. Equating the coefficients of R1-lfa, R-l+lIa in these expressions for dRldt 
gives 

(13) T0-So  = 1, 

where 

where derivatives have been eliminated using the basic equations. 

characteristic condition 
Since this line is a negative characteristic the variables there must satisfy the 

jc*u* c* 

R Y 
d(u* - kc*) = __ at--@* 

which, on setting the leading two coefficients zero, gives 

Y 
2 2ka ja(2a-1) 

Y Y 1 - a  
+ 6so{ 2ja- 1 + - + __ + 
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The conditions (15), (16) could have been derived directly from the differential 
equations. We require dr ldt ,  dsldf to be finite on f = f l ,  i.e. r = 1 + 5. Hence we 
require B- = 0 for s = so, which is equivalent to (15). Similarly, the condition 
that di'ldg, daldt be finite for s = so means that A- must be zero to order s - so, 
which can be shown to be equivalent to (16). 

5. The boundary conditions 
The boundary values of u*, c*, q5* at the front are given by (9), from which we 

can deduce the boundary values of r ,  s, r ,  S, F there, taking into account the 
displacement of the front from the shock path. The equation of the front is 

Hence, on the front 

I s = - E ,  

r (  -8) = 2/(y+ I), 

+ 2 a - 1  - K ,  I F (  - E )  = ( y + 1 ) ( 3 - 2 a ) ( s  2P 

S( -E)  = __ -PE j ! ) +  a + k -  
3 - % (  y + l  

F ( - E )  = Ho+kp(l+- k ( l  -a) 
3-20! 

(17) 

The above boundary values, together with the regularity conditions (la), (15), 
(IS), serve to determine the solution. The basic solution for r = r ( s )  has to satisfy 
the differential equation ( 7 ) ,  which contains the unknown parameter a, and the 
boundary values r (so) = ro, r (  - E )  = 2/(y + l), where ro, so are given in terms of 
a by (13), (15). On substituting (13), i.e. ro = 1 +so, into (15) a quadratic in so is 
obtained. Consider the expansion for r (s)  about the 1.n.c. 

r (s)  = ro+rl(s-so)+r,(s-so)2+ ... + ~ , ( s - s , ) ~ +  .... 

The solution can be developed theoretically by substituting this series into ( 7 ) .  
The first equations, which determine To,  rl, are quadratic equations but all of the 
succeeding ones are linear. Thus, for a given value of a, there are four solutions 
and we require one of these solutions to pass through the shock point for some 
particular value of a. 

The perturbation terms F ,  S ,  F have to satisfy the differential equations (12) 
together with the boundary conditions (17) containing the unknown parameter P, 
which measures the displacement of the front, and the boundary conditions (14), 
(16) containing the unknown 1.n.c. displacement 6. The latter contains Fo, which 
is the boundary value of F on the 1.n.c. and is the third unknown. Thus there are 
six boundary conditions containing three unknown parameters P,6, Fo and, since 
the boundary conditions are linear, the solution for T, S ,  F is uniquely determined 
in terms of r (s) .  
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6. The numerical solution 
In  order to evaluate the perturbations it will first be necessary to find the 

correct value of CI. and tabulate the basic solution r = r(s) for the particular choice 
of y and j. We can avoid the possible difficulty of drlds being indeterminate at  
s = so on direct substitution into the differential equation (7) by making use of the 
power series expansion for r(s) at s = so, the existence of which is ensured by the 
regularity assumption. However, direct computation of the coefficients r, is out 
of the question because of the rapidly increasing complexity of the form of the 
equations for r,, and each r,  has to be dealt with separately. For this reason the 
following iterative method is employed. Let R,, RA be tabulated functions which 
represent r ,  r’ respectively as far as the term involving r,, in the form 

RA = r,+ 2r2(s - so) + . .. + nr,(s- 

R, = ro + rl(s -so) + . . . + r,(s - so), + e,+,(s - 

(n  + 1)  en+,(s-s0)n+ O((s- so),+,), 

O((s - 
where en+, is constant. From these we can deduce the next approximation RA+,, 
RnCl by substituting the former into (7),  written as f (r,r’,s) = 0. 

Then 

where = 0, (aflar‘), = 0,  which we can write as 

In  neglecting the term of order (s - 
en+, - rn+,, and hence the following iterative formula for RA+, 

in the above we obtain a formula for 

The error coefficient in Rh+2 so obtained is independent of en+, and is a 
function of n and the partial derivatives off at  s = so. From (20) we can tabulate 
RA+, throughout the range so to - E. In  practice the total range from so to - E is 
roughly 0.2 so that only 5 subdivisions of the range are sufficient to ensure that 
the integration does not introduce errors of order ( s - ~ ~ ) ~ + l  (otherwise the 
iteration would fail to converge to the solution). The initial approximations are 
taken as R; = r,, R, = ro + rl(s - so) and the iteration can be continued 
indefinitely. 

The method can be extended to the solution of the three simultaneous equations 
(12) for r,  s, F.  Having selected 6, Fo arbitrarily we find ?,, So from (14) and (16). 
To form the initial approximations to ?, s, F we require their derivatives a t  s = so. 
These are obtained by equating to zero the appropriate coefficient in the expan- 
sions of the differential equations, which give rise to linear equations for ?,, S,, F, 
so that the problem of choosing the appropriate solution does not arise here. 
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Thus we can tabulate Rl = F,, R, = To + r,(s - so), etc. The iterative formulae for 
RA+l, etc., are obtained by substituting the nth approximations into the 
governing equations and retaining only the first term, which gives three simul- 
taneous, linear, algebraic equations for the corrections EL,, - Rh, etc. Solving 
the equations we obtain the required iterative formulae, and, for example 

where (13) are denoted by L, M ,  N respectively, 

M(n) = M(RA, En, 8A, .. .), 

and (aM/ajS),, for example, is the coefficient of (s - so) in the expansion of (aM/&) 
about s = so, and is also the first non-vanishing coefficient. 

7. The basic shock wave solution 
For a given choice of y ,  j, we wish to calculate the appropriate value of a and 

tabulate r (s)  from the 1.n.c. to the front. It remains to be settled which of the four 
solutions can be made to satisfy the conditions of the problem. The six cases 
y = 1.2, 1-4, $ withj  = 1, 2 were computed by Butler (1954). The same solution 
‘branch’ is taken in each of these cases. In  extending these results to the case 
y = 3, corresponding to the motion of the products of a detonation, it is found 
that a different choice of branch is necessary. For this reason it was thought 
necessary to examine the behaviour of the integral curves of the differential 
equation with a view to examining the nature of the change-over and also the 
existence and uniqueness of the solution, particularly in the region of the 
changeover. The integral curves for the case y = 1.4,j  = 2 are given by Guderley. 
The two cases selected here are y = +,j = 2 and y = 3 , j  = 2. The fact that these 
differ significantly suggests that a closer investigation is required. 

The equation (7)  for r ( s )  has nine singular points. There are three on the 
r-axis P4(0, 0), P,(O, 1) and (0, a-l) and three in the region s < 0 

P2(so+, 1 +so+),  P3(so-, 1 +so-), Ps(S, k / a ( j  + k + l)), 

using Guderley’s suffices. The remaining three are the mirror images of P2, P3, P5 
in the r-axis and correspond to expanding flows. The quantities so* are the two 
roots of the quadratic for so and S is the negative solution of 

X2 = r ( r  - 1) (ar - l)/k{y( 1 - a) +a( 1 - r ) } ,  

where T = k/a( j+ k+ 1). 
The behaviour of the integral curves is found by determining the nature of these 

singularities, the region of interest being s < 0, 0 < r < 1. In  these calculations 
the correct value of a was used. The curves are sketched in figure 2 for the case 
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y = g, j = 2 .  All curves change direction on crossing the line r = 1 + s, except for 
the two limiting ones through each of Pz and P3, which represent the four solutions 
which are regular on the 1.n.c. We require a curve which starts at  the shock point 
and passes through Pz or P3 and also through the origin P4, which corresponds to 
t = 0. On this curve time must increase from the shock point to P4. From the 
sketch it is seen that there are two such curves, one through Pz and the other 
through P3. One of these has to be made to pass through the shock point for some 
choice of a. For values of y in this neighbourhood it was found in practice that an 
appropriate solution was found by selecting the curve through P3 and the curve 
through Pz could not be made to pass through the shock point. 

r 

f 

The sketch of the integral curves in the case y = 3,j = 2 are given in figure 3. 
In  this case Pz and P3 are both nodes and P, is a saddle point, below the line 
r = 1 + s. Again only one solution was found, the curve through Pz being slected 
in this case. 

For given y ,  j there is a range of values a, < a < a2 for which so is imaginary. 
The range 0 < a < a, never yields any solutions. For j = 2, as y is increased 
from 1-2, the correct value of a approaches a2 andthe correct values of so 
approach each other. For some critical value of y ,  yc say, the roots are equal and 
the transition from one branch to the other occurs at ye. For any given value of 
y, a2 is that value of a for which Pz, P3 coincide. For values of a < a2 these two 
singular points are complex and so no regular solutions can be continued across 
the line r = 1 + s to the origin. As a is increased from a2, Pz and P3 separate and 
move along the segment of r = 1 + s as far as (0, 1 ), ( - 1 , O )  when a = 1. 

We require a solution through either Pz or P3, the solution and the positions of 
the two points depending on the value of a, and also through the shock point, the 
position of which depends on y only. In  table 1 d(Pz) denotes the discrepancy, for 
the spherical case, between the solution obtained by integrating from P2 as far 
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as s = - E and the required value of 2/(y  + 1) there. For y = 1.865 d(P3) has a 
zero in the given range and this zero corresponds to the actual solution. 
Apparently d(P,) has no zero. The situation is reversed in the case y = 1.875, the 
point P2 being appropriate in this case. Thus, 1.875 > yc > 1.865. The transition 
at  y = yL' takes place smoothly and there is no apparent physical significance to 
the case y = yc. 

r 

T 

FIGURE 3 

a 
0.674453 
0.6744535 
0.67 4454 
0.674456 
0.6 74460 
0.675 

y = 1.865 
h 

W 2 )  

so imag. 
- 0.00459 
- 0.00557 
- 0'00789 
- 0.0109 
- 0.0749 

W,) a 
so imag. 0.6738568 
- 0.00033 0.6738559 
+ 0.00066 0,6738560 
+ 0.00308 0.6738562 
+ 0.00606 0.67386 
+ 0.0751 0.675 

TABLE 1 

y = 1-875 

d(PA 
so imag. 
+ 0.00206 
+ 0.00132 
+ 0.00079 
- 0.00387 
- 0.1003 

W,) 
so imag. 
+ 0.0033 
+ 0-0039 
+ 0.0046 
+ 0.0092 
+0.118 

For a given y the roots for so are monotonic in a in the range a2 < a < 1, so that 
P2, P3 vary continuously, without repetition, along the arc r = 1 + s as a varies 
between aZ and 1. Together with the results of table 1 this suggests the following 
behaviour. For CI = aZ, Pz and P3 coincide and the single integral curve through 
them separates the area 0 < r < 1, r > 1 + s  into two distinct regions. As a is 
increased the two integral curves through P2, P3 must lie wholly within each of 
these regions so that points in the lower region may be reached from P3 for some 
value of a and those above from P2. It seems likely that no two curves through one 
of P,, P3will intersect for distinct choices of a. If this is so then the solution will be 
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unique for all y. The choice between Pz, P3 is determined by whether the shock 
point lies above the limiting integral curve through the point formed by the 
merging of P2, P3. Apparently for y < ye the shock point lies below this curve, and 
above it for y > ye. 

The results for the eight cases y = 1-2, 1.4, $, 3 with j = 1,2 are given in 
table 2 along with those given by Whitham's approximate method, to be 
described later, for comparison. 

j = 1  j = 2  
rv 7- 

Y a a approx. CI a approx. 

1.2 0.861163 0.859762 0.757142 0.754021 
1.4 0.835323 0.835373 0.7 17 174 0.717288 

3 0.775667 0.772661 0.636411 0.629542 

TABLE 2 

6 
3 0.815625 0.81 6043 0,688377 0.688654 - 

8. The perturbation solution 
The solution for the perturbations are now obtained by integrating the three 

simultaneous equations (1 1) for r, 3, F ,  subject to the boundary conditions at  the 
front and the 1.n.c. The function ~ ( s )  and the parameter a appearing in (1 1) are 
now known. As for the basic solution we develop the solution away from the 
I.n.c., having satisfied the regularity condition there, as far as the front. To do so 
we select arbitrary values of 6, Fo, which determine F ,  3, F at s = so, and continue 
the solution to s = - E, where the conditions will, in general, not be satisfied by 
the present solution. Suppose we have found two such linearly independent 
solutions, corresponding to choices S(O), Fho) and &(I), FL1) for the values of 6, F,. 
Let ?Lo), ?g denote the values of F a t  s = so, - E respectively of the solution. The 
boundary conditions at  the front, given by (191, can be written as 

?H = Alp- K ,  

3, = AzP-  E', 

FH = A,P+ HO, 

where p is unknown. Let us take a linear combination of the two numerical 
solutions and satisfy the above conditions. Thus 

(19) 1 XFP + Y?g = Alp-  K ,  

X@+ YSg = AzP-E',  

X F g +  Y F g  = A3P+Ho, 

which can be readily solved by X ,  Y ,  /3 so that we can thus evaluate p. The 
solution for r,  3, F appropriate to the boundary conditions can be obtained by 
performing the integration from the 1.n.c. with the correct values of S, Fo which 
are given by Po = XFbo)+ YFS", 

x(rp + sp) + Y(rp  + @) 
2(a - 1) -t- [ ( T I -  1) Bo+/2&r, + k ) ]  - 6 =  
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The quantities K ,  E’, H, appearing in (19) depend upon the values of Q, c $ ~ .  
However, the dependence is linear so that all that is necessary is to evaluate two 
solutions due to linearly independent choices of Q ,  c:~. For simplicity we can take 
Q = 1, c $ ~  = 0 and Q = 0, c t 2  = 1, the former corresponding to a detonation front 
and the latter to the correction due to counter-pressure. The solution in a specific 

Y P approx. P P-$(Y+l)K P + E‘/E 
1.2 - 0-0482 -0.1009 - 0,3209 0.8891 
1.4 0.2158 0.2508 - 0,2292 1.2108 

3 3.2679 4.4760 + 0.4760 4.4760 
6 
3 0.5894 0.7737 -0.1152 1.6626 - 

TABLE 3 . j  = 2, Q =. 1, cZ2 = 0 

Y ,B approx. P P- *(Y + 1)K P + E’/E 
1.2 - 0.04816 - 0.08199 - 0.3020 0.9080 
1 *4 0.2158 0-2310 - 0.2490 1-1910 
3 0.5894 0.6692 - 0.2995 1.4783 
3 3.268 3.594 - 0.4056 3.5944 

TABLE 4 . j  = 1, Q = 1, czz = 0 

6 - 

Y P approx. P /3-+(7+1)K P + E’/E 
1.2 - 0.4730 - 0.7047 - 1.7047 4,2536 
1.4 0.2172 0.3097 - 0.6903 2.7382 

3 0.6667 1.0435 + 0-0435 1.3769 

6 
3 0.4541 0.6942 - 0’3058 2-0942 - 

TABLE 5. j = 2, Q = 0, cg2 = 1 

Y ,B approx. P P - ?MY + 1)K P + E’/E 
1.2 - 0.4730 -0.6211 - 1.6212 4.3371 
1.4 0.2172 04593 - 0.7407 2.6879 

3 0.6667 0.7738 - 0.2262 1.1071 

TABLE G . j  = 1, Q = 0, ~ $ 2  = 1 

6 
3 0.4541 0.5587 - 0.4413 1.9875 - 

case, due to either or both of these effects, is found by taking the appropriate 
combination of these two solutions. For y = 1.2, 1.4, 3, 3 a n d j  = 1, 2 we have 
sixteen distinct cases. The results for these are given in tables 3,4,5 and 6 along 
with those obtained by the approximate method of Whitham. The boundary 
values of u*, c* a t  the front are given by 

The coefficients p- &(y + 1) K ,  p+E’/E are also tabulated. 
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9. The results and the Whitham simplified analysis 
Before discussing the results it will be of interest to evaluate the solution by 

the approximate method in the form given by Whitham. It is known that this 
gives remarkable accuracy in estimating a (Chisnell 1957; Whitham 1958). 
Chisnell employed his ' shock-area ' rule, which he formulated for shock waves in 
channels of slowlyvarying cross-section, in the evaluation of a for y = 1.2, 1.4,$, 
j = 1 , 2  and compared the results with Butler's. Whitham obtained Chisnell's 
results by assuming that the characteristic conditions to  be satisfied behind the 
shock will be satisfied by the boundary values there. This method will be applied 
to the present problem. 

The characteristic condition to be satisfied behind the front is 

qU* - kc*) = j u*c*~- l  at - y - v  a$* 
and the boundary values there are 

c* = EBI-lla + (E' + ,8E) R-l+lla, 
$* = k( 1 - l/a) log R + (Ho + k,8) R-2+2/a. 

On substituting these values into the characteristic condition, and using the 
fact that dR/dt = u* - c*, we obtain a polynomial in R-2+2/a. Setting the f i s t  term 
zero gives Whitham's formula for a 

1 - 1  a 
= ($)/(--&+E) ('+E). Y+1 Y 

Equating the coefficient of the second term to zero yields 

These approximate results neglect the effect of disturbances reaching the 
shock &om behind, due to the characteristic condition not being applied correctly. 
The changing surface area of the shock is accounted for. The area of the front is 
proportional to Ri which results in the exponent in the power law for the shock 
speed, i.e. 1 - l/a, being proportional toj .  The perturbation solution for /3, which 
arises from energy terms proportional to volume and independent of the geometry 
of the system, is independent of j. The result (20) for a is very accurate because 
the propagation of the shock is largely governed by the focusing effect, due to its 
surface area diminishing, and is affected little by other disturbances. This is not 
the case for the perturbations, neither of which (heat release and initial pressure) 
are geometric effects and the results for /3 are much less accurate than those for a. 
A graph of the approximate results for ,8 is given in figures 4 and 5. 

From the results obtained by the full analysis it is seen that for given j, Q ,  cg2 
there is always a change in sign in ,8, considered as a function of y. Thus the 
introduction of either of the two effects can produce an increase or a decrease in 
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the unsealed speed of the front, depending upon the value of y. In  each case 
/3 = 0 for some value of y and in this case the perturbation of the front speed is of 
order A--4+4Ia. The critical values of y were found by the approximate method to be 
1.30 for Q = 0, cg2 = 1 and 1-24 for Q = 1, c;2 = 0. The graph of /? from the 
approximate method follows the behaviour of the correct values fairly closely, 
and the former would appear to be sufficiently accurate to estimate the critical 
values of y to two decimal places. 

1 -0 

0.5 

0 P 

- 0.5 

- 1.0 
1 

0 0 

X 
0 - 

Q = O  

Cf = 1 
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X 

0 

I I I 1 I 

1 1.2 1.4 513 2 3 

I I I 1 I 
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X 
0 - 

Q = O  

Cf = 1 

0 j = 2, exact 
x j = 1, exact 

0 Approx. 
X 

0 

Y 
FIGURE 4 

The occurrence of negative values for p does not necessarily mean that the 
addition of a heat release in a given case would cause the front to slow down. 
The results of this paper would have to be scaled for a given situation. This 
scaling would be dependent on the initial conditions, which are necessarily 
excluded from the present analysis. Also no simple overall energy consideration 
may be applied as the wave has in effect come from infinity. This is not the caae 
for expanding self-similar flows where the region of validity is the total region in 
motion. 

If the initially uniform medium considered so far is replaced by a medium 
initially at rest but having variable density, p; cc Bm, say where m is a constant, 
then the initial sound speed c;T cc R-mJz. The similarity hypothesis will still hold 
provided c$ remains small relative to U*, i.e. &m < l/a- 1, and the solution is 

where the value of j3 is identical to that in the case cgz = 1, Q = 0, computed 
previously. The coefficients of the perturbations do not differ from the previous 
solution, the only difference being in the power of A. 

(1 + /3~-l+l/a--ml2 I? rJ* = -Al- l /a  
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Q = 1  

c;2 = 0 
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0 

X 

j = 2, exact 
x j = 1, exact 
0 Approx. 

I I I I I 
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Y 
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